Difference in TRI13 Gene Sequences between the 3-Acetyldeoxynivalenol Producing Fusarium graminearum Chemotypes from Canada and China

نویسندگان

  • Chami Amarasinghe
  • Jian-Hua Wang
  • Yu-Cai Liao
  • W.G. Dilantha Fernando
چکیده

Positive-negative PCR assays based on the genes involved in the trichothecene biosynthesis pathway are useful in assessing the risk of trichothecene contamination in grain and are important in epidemiological studies. A single PCR detection method based on the structural gene sequence of TRI13 gene has been developed to predict the 3-ADON, 15-ADON and NIV chemotypes in China. The chemotypic differences are based on the deletions within the TRI13 gene. The objective of this study was to assess the reliability of using this single primer based on the TRI13 gene to differentiate the F. graminearum chemotypes in Canada. In this study, we found that, this single PCR detection method based on the deletions in the TRI13 gene cannot be used to differentiate the 3-ADON and 15-ADON chemotypes in the Canadian F. graminearum isolates; further sequence analysis of the PCR products confirmed that both Canadian 3-ADON and 15-ADON chemotypes have the 61 bp deletion in the TRI13 gene. This 61 bp deletion was absent in the Chinese 3-ADON isolates. Therefore these findings revealed that there are genetic differences between the examined 3-ADON F. graminearum isolates from Canada and China. The observed genetic differences between the 3-ADON chemotype populations in Canada and China may be resulted from a random mutation (insertion/deletion) that took place in one of the populations and accumulated due to genetic drift and/or selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Generic PCR Detection of 3-Acetyldeoxy-nivalenol-, 15-Acetyldeoxynivalenol- and Nivalenol-Chemotypes of Fusarium graminearum Clade

Fusarium graminearum clade pathogens cause Fusarium head blight (FHB) or scab of wheat and other small cereal grains, producing different kinds of trichothecene mycotoxins that are detrimental to human and domestic animals. Type B trichothecene mycotoxins such as deoxynivalenol, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON) and nivalenol (NIV) are the principal Fusarium m...

متن کامل

Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat

Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explor...

متن کامل

Intraspecies Interaction of Fusarium graminearum Contributes to Reduced Toxin Production and Virulence.

Fusarium graminearum is a pathogenic fungus that causes Fusarium head blight in wheat and lowers the yield and quality of grains by contamination with the trichothecene mycotoxin deoxynivalenol. The fungi coexist and interact with several different fusaria as well as other plant pathogenic fungi and bacteria in the field. In Canada, F. graminearum exists as two main trichothecene chemotypes: 3-...

متن کامل

Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China

In China, Fusarium head blight is caused mainly by the Fusarium graminearum species complex (FGSC), which produces trichothecene toxins. The FGSC is divided into three chemotypes: 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and nivalenol (NIV). In order to predict the geographical changes in the distribution of these chemotype populations in major winter wheat-producing ...

متن کامل

Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China

Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three indepe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2011